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Interest Rate Dynamics and Commodity Prices1

Christophe Gouel,∗ Qingyin Ma,† and John Stachurski‡

1. Introduction

Commodity prices are major determinants of exchange rates, tax revenues, the balance
of payments, output fluctuations, and inflation around the world (see, e.g., Byrne et
al., 2013; Gospodinov and Ng, 2013; Eberhardt and Presbitero, 2021; Peersman, 2022).
While some commodity price movements are driven by idiosyncratic shocks to supply and
demand, aggregate demand and monetary conditions also play a key role. Alquist et al.
(2020) show that up to 80% of the variance of commodity prices is explained by common
factors (see also Byrne et al., 2013). Aggregate factors are particularly important when
considering the impact of commodities on inflation and exchange rates because such
factors induce price comovement in all or many commodities.

Historically, the aggregate factor that has generated most attention is interest rates.
For example, Frankel (2008b, 2008c, 2018) has long argued that interest rates are a
major driver of comovements in commodity prices, with rising interest rates decreasing
commodity prices and falling interest rates increasing them. The main argument relates to
“cost of carry:” higher interest rates reduce demand for inventories, which exerts downward
pressure on commodity prices. At the same time, it is easy to imagine scenarios where
interest rates and commodity prices are positively correlated—for example, when high
aggregate demand boosts both commodity prices and the cost of borrowing (through
credit markets and, potentially, the responses of monetary authorities).

As the previous paragraph suggests, empirical studies of the sign and magnitude of interest
rate effects on commodity prices face deep challenges because of the endogeneity and the
general equilibrium nature of the mechanisms in question. In particular, interest rate
movements are endogenously determined by several macroeconomic variables that also
affect commodity markets. Even if we fully control for changes in output and demand,
rising commodity prices might themselves trigger a tightening of monetary policy, without

1We thank John Rust, Liyan Yang, Changhua Yu, and seminar audiences at CEPII and Peking University
for very helpful comments and suggestions. Qingyin Ma gratefully acknowledges the financial support from
Natural Science Foundation of China, No. 72003138 and the Project of Construction and Support for High-
Level Innovative Teams of Beijing Municipal Institutions, No. BPHR20220119.
∗INRAE and CEPII: christophe.gouel@inrae.fr
†ISEM: qingyin.ma@cueb.edu.cn
‡Research School of Economics: john.stachurski@anu.edu.au
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any change in output (see, e.g., Cody and Mills, 1991). Conversely, pure monetary shocks
affect commodity markets through various channels (e.g., speculation, aggregate demand,
and supply response) that are hard to disentangle empirically.2

These challenges demand a structural model built on firm theoretical foundations that
can isolate the direct effect of interest rates on commodity prices through each of the
channels listed above. The obvious candidate to provide the necessary structure is the
rational expectations competitive storage model developed by Samuelson (1971), Newbery
and Stiglitz (1982), Wright and Williams (1982), Scheinkman and Schechtman (1983),
Deaton and Laroque (1992, 1996), and Chambers and Bailey (1996), among others.3 In
this model, commodities are assets that also have intrinsic value, separate from future
cash flows. The standard version of the model features time-varying production, storage
by risk-neutral forward-looking investors, arbitrage constraints, and non-negative carryover
(i.e., stocks can only be positive or null). Within the constraints of the model, there is a
clear relationship between interest rates, storage, and commodity prices. Fama and French
(1987) empirically show that the relationship between the basis, the spread between the
futures and spot prices, and interest rates is consistent with the structure of this model.

The main obstacle to applying the standard competitive storage model to the problem
at hand is that the model presented in the existing literature has a discount rate that
is both time and state-invariant. The source of this shortcoming of the standard model
is technical: a constant positive interest rate is central to the traditional proof of the
existence and uniqueness of equilibrium prices, as well as to the study of their properties
(see, e.g., Deaton and Laroque, 1992, 1996). In particular, positive constant rates are
used to obtain contraction mappings over a space of candidate price functions, with the
discount factor being the modulus of contraction.

At the same time, relaxing the assumption of constant discounting is essential for any
serious analysis of the interactions between interest rates and commodity prices. One
reason is that real interest rates do in fact exhibit very large movements over time, as
shown in Figure 1.4 Another is that the exact nature and timing of shocks to supply,
demand and interest rates have important implications in terms of sign and magnitude of
interest rates effects.

Relaxing the assumption of constant interest rates in the competitive storage model is
2For example, a decline in the US interest rate can stimulate both global demand (see, e.g., Ramey,

2016) and firms’ incentive to hold inventories (see, e.g., Frankel, 1986, 2008a, 2014), which then increase
commodity prices. An increase in interest rates works in the opposite direction.
3Samuelson (1971) proved that the equilibrium quantities produced by this model are welfare maximizing

for a representative consumer with marginal utility equal to the inverse demand function. Deaton and
Laroque (1996) and Cafiero et al. (2011) showed that the model can replicate several important features
of the data.
4Data source: FRED. The real interest rate is calculated based on the one-year treasury yield and a measure

of expected inflation. See Section 4 regarding calculations detail for Figure 1.
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Figure 1 – The US real interest rate over the long run

nontrivial. The main reason is that negative real interest rates cannot be ignored, as
is clear from Figure 1. If interest rates can be sufficiently negative for sufficiently long
periods of time, then the model will have no finite equilibrium (due to unbounded demand
for inventories). Thus, developing a model that can handle realistic calibrations requires
accommodating negative yields on risk-free bonds in some states of the world, while
providing conditions on these states and the size of the yields such that the model retains
a well-defined and unique solution.

In this paper, we begin by extending the competitive storage model to the setting of
state-dependent discounting and establishing conditions under which a unique equilibrium
price process exists. These conditions allow for both positive and negative discount rates,
while also providing a straightforward link between the asymptotic return on risk-free
assets with long maturity, the depreciation rate of the commodity in question, and the
existence and uniqueness of solutions. Under these conditions, in addition to existence
and uniqueness, we show that the equilibrium solution can be computed efficiently on
the basis of a globally convergent algorithm and provide a sharp characterization of the
continuity and monotonicity properties of the equilibrium objects.

With these results in hand, we turn to an examination of the effect of interest rates on
commodity prices from a theoretical and quantitative perspective. We show that, in some
settings, interest rates and commodity prices can be positively correlated, such as when
shocks that shift up interest rates also increase aggregate demand. Thus, finding clear
conditions under which interest rates and commodity prices exhibit negative correlation
is nontrivial. Nonetheless, we are able to provide relatively sharp conditions under which
negative correlation is realized. In particular, we show that if the exogenous state follows
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a monotone Markov process that is independent across dimensions and has a non-negative
effect on interest rate and commodity output, then interest rates and commodity prices will
exhibit negative contemporaneous correlation.5 A simple example, explored quantitatively
in Section 4, is if interest rate follows an autoregressive process and commodity output
is iid, then a positive interest rate shock raises the cost of holding stocks, leading to
a reduction in stock levels that are sold on the market, the additional market supply
depresses current price, which leads to a negative correlation between interest rate and
commodity price.

On the quantitative side, we study the impulse response functions (IRFs) of commod-
ity price, inventory, and price volatility to an interest rate shock for a combination of
structural parameters typical of commodity markets. As a special application of our the-
ory, we examine the speculative channel—the role of speculators in the physical market
whose incentive to hold inventories is affected by interest rate movements—which has
been regularly proposed but whose analysis has been neglected thus far. To capture the
nonlinear dynamics of the competitive storage model, we follow the approach of Koop et
al. (1996), who define the IRFs as state-and-history-dependent random variables. The
simulated IRFs show that prices immediately fall after a positive interest rate shock and
slowly converge to their long-run value. Moreover, an interest rate increase depresses in-
ventories and increases price volatility. Stocks fall immediately with the shock, but reach
their lowest value after a long time, and converge to their long-run average even more
slowly than prices. Price volatility tends to follow inventory dynamics: a larger response
in inventory causes an inversely larger response in price volatility. Finally, the magnitude
and overall pattern of the IRFs depend substantially on the market supply and prevailing
interest rate.6

Regarding existing literature on interest rates and commodity prices, Jeffrey Frankel has
made numerous empirical and theoretical contributions to this topic, focusing on how
commodity prices overshoot their long-run target after a shock due to their inherent price
flexibility (Frankel and Hardouvelis, 1985; Frankel, 1986, 2008a, 2014). This literature
tends to find a negative effect of interest rate increases on commodity prices in the short
(Rosa, 2014; Scrimgeour, 2015) and medium run (Anzuini et al., 2013; Harvey et al.,
2017).7 The negative relationship between interest rates and commodity prices has also
been found by Christiano et al. (1999) and Bernanke et al. (2005) in other contexts.

5The condition we propose is also partly necessary, in the sense that if different exogenous states are con-
temporaneously correlated, then the trend of comovement could be disrupted and the relationship between
interest rates and commodity prices could be reversed. In general, the overall effect could be strengthened
or weakened once this independence-across-dimensions condition is violated, in which case a quantitative
analysis is necessary.
6These results suggest that postulating an invariant effect of monetary shocks under different market supply

and interest rates may cause biases in empirical analysis.
7An exception is Kilian and Zhou (2022), who find no effect of real interest rate movements on oil prices.
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Moreover, interest rates affect not only the level of commodity price, but also their cross-
correlation and their volatility as shown by Gruber and Vigfusson (2018). Compared to
these studies, the methodology developed here allows for a systematic analysis of the
transmission mechanisms. In particular, our quantitative analysis clarifies the role of the
speculative channel in the observed negative relationship.

Our work also contributes to the study of the theoretical and empirical properties of
the competitive storage model. Theoretically, we derive new results on the existence
and uniqueness of a rational expectations equilibrium in a general competitive storage
model with state-dependent and time-varying discount factors, which extend the results
of Scheinkman and Schechtman (1983), Deaton and Laroque (1992), and Cafiero et
al. (2015), and are crucial for studying the dynamic causal effect of these factors on
commodity price fluctuations.8 Moreover, we provide a sharp characterization of the
analytical properties of the equilibrium solution, on the basis of which we develop a suitable
endogenous grid algorithm that solves the equilibrium objects efficiently and accurately.

Empirically, since Deaton and Laroque (1996), a literature has aimed at analyzing the em-
pirical validity of the storage model (e.g., Cafiero et al., 2011, 2015; Gouel and Legrand,
2022). This literature focuses on idiosyncratic shocks and neglects all shocks to storage
costs. In this paper, we make the first attempt to study the role of aggregate shocks on
storage costs. We provide the first theoretical analysis of the general conditions under
which interest rates are negatively correlated with commodity prices, and give a quantita-
tive analysis of the impact of this aggregate shock on commodity price dynamics through
the speculative channel.

The rest of the paper is organized as follows. Section 2 formulates a rational expecta-
tions competitive storage model with time-varying discounting and discusses the existence,
uniqueness, and computability of the equilibrium solutions. Sections 3 and 4 examine the
role of interest rates on commodity prices from a theoretical and quantitative perspective,
respectively. Section 5 concludes. Proofs, descriptions of algorithms, and counterexam-
ples can be found in the appendices.

2. Equilibrium Prices

This section formulates the equilibrium problem for the competitive storage model in a
time-varying interest rate environment and discusses conditions under which existence and
uniqueness of the equilibrium pricing rule hold.

8See also Basak and Pavlova (2016) for another storage model with stochastic discount factor but which
abstracts from the non-negative constraint on storage.
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2.1. The Model

Let It ≥ 0 be the inventory of a given commodity at time t, and let δ ≥ 0 be the
instantaneous rate of stock deterioration. The cost of storing It units of goods from time
t to time t+1, paid at time t, is kIt , where k ≥ 0. Let Yt be the output of the commodity.
Let Xt be the total available supply at time t, which takes values in X := [b,∞), where
b ∈ R, and is defined by

Xt := e
−δIt−1 + Yt . (1)

Let p : X→ R be the inverse demand function. We assume that p is continuous, strictly
decreasing, and bounded above.9 Let Pt be the market price at time t. In the absence
of inventory, Pt = p(Yt). In general, market equilibrium requires that total supply equals
total demand (sum of the consumption and the speculation demand), equivalently,

Xt = p
−1(Pt) + It . (2)

An immediate implication of (2) is that Pt ≤ p(b) and

Pt ≥ p(Xt), with equality holding when It = 0. (3)

Let Mt+1 be the one-period stochastic discount factor applied by investors at time t. The
price process {Pt} is restricted by

Pt ≥ e−δ EtMt+1Pt+1 − k, with equality holding if It > 0 and Pt < p(b). (4)

In other words, per-unit expected discounted returns from storing the commodity over
one period cannot exceed the per-unit cost of taking that position.

Combining (3) and (4) yields10

Pt = min
{
max

{
e−δ EtMt+1Pt+1 − k, p(Xt)

}
, p(b)

}
. (5)

Both {Mt} and {Yt} are exogenous, obeying

Mt = m(Zt , εt) and Yt = y(Zt , ηt), (6)

where m and y are measurable functions satisfying m ≥ 0 and y ≥ b, {Zt} is a time-
homogeneous irreducible Markov chain (possibly multi-dimensional) taking values in a
finite set Z, and the innovations {εt} and {ηt} are iid and mutually independent.

9We impose an upper bound to simplify exposition. In Appendix A we show that unbounded demand
functions can also be treated and theory below still holds.
10The minimization over p(b) in (5) is required due to the generic stochastic discounting setup. As can
be seen below, our theory allows for large and highly persistent discounting process (e.g., arbitrarily long
sequences of negative low interest rates under risk neutrality), in which case e−δ Et Mt+1 > 1 with positive
probability, thus the marginal reward of speculation, e−δ Et Mt+1Pt+1, can be larger than p(b). The extra
minimization operation is then required to meet the equilibrium condition Pt ≤ p(b).
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Example 2.1. The setup in (6) is very general and allows us to model both correlated and
uncorrelated {Mt , Yt} processes. In particular, it does not impose that {Mt} and {Yt} are
driven by a common Markov process, nor does it restrict that they are mutually dependent.
Consider for example Zt = (Z1t , Z2t), where {Z1t} and {Z2t} are mutually independent,
possibly multi-dimensional Markov processes, and Mt = m(Z1t , εt) and Yt = y(Z2t , ηt).
In this case, {Mt} and {Yt} are mutually independent, although they are autocorrelated.
If in addition {Z1t} (resp., {Z2t}) is iid or does not exist, then {Mt} (resp., {Yt}) is iid.
Obviously, these are all special cases of (6). More examples are given in Section 3 below.

Below, the next period value of a random variable X is denoted by X̂. In addition, we
define Ez := E ( · | Z = z) and assume throughout that

e−δ Ez M̂p(Ŷ )− k > 0 for all z ∈ Z. (7)

In other words, the present market value of future output covers the cost of storage.

2.2. Discounting

To discuss conditions under which price equilibria exist, we need to jointly restrict dis-
counting and depreciation. To this end, we introduce the quantity11

κ(M) := lim
n→∞

− ln qn
n

where qn := E

n∏
t=1

Mt . (8)

To interpret κ(M), note that, in this economy, qn(z) := Ez
∏n
t=1Mt is the state z price of

a strip bond with maturity n. Since {Zt} is irreducible, initial conditions do not determine
long run outcomes, so qn(z) is approximately constant at qn defined in (8) when n is
large. As a result, we can interpret κ(M) as the asymptotic yield on risk-free zero-coupon
bonds as maturity increases without limit.

In Lemma A.1 of Appendix A, we provide a numerical method for calculating κ(M) by
connecting it to the spectral radius of a discount operator.
Assumption 2.1. κ(M) + δ > 0.

Assumption 2.1 is analogous to the classical condition r+δ > 0 found in constant interest
rate environment of Deaton and Laroque (1996) and many other studies.12 In the more
general setting we consider, Assumption 2.1 ensures sufficient discounting, adjusted by
the depreciation rate, to generate finite prices in the forward-looking recursion (5), while
still allowing for arbitrarily long sequences of negative yields in realized time series.

11Here and below, expectation without a subscript refers to the stationary process, where Z0 follows the
(necessarily unique) stationary distribution.
12In the model with constant risk-free rate r , the discount rateMt is 1/(1+r) at each t, so, by the definition
in (8), we have κ(M) = limn→∞ n ln(1 + r)/n = ln(1 + r) ≈ r .
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2.3. Equilibrium

We take (Xt , Zt) as the state vector, taking values in S := X × Z. To ensure that the
equilibrium prices are non-negative, we assume free disposal as in Cafiero et al. (2015).
Conjecturing that a stationary rational expectations equilibrium exists and satisfies (5),
an equilibrium pricing rule is defined as a function f ∗ : S→ R+ satisfying

f ∗(Xt , Zt) = min
{
max

{
e−δ EtMt+1f

∗(Xt+1, Zt+1)− k, p(Xt)
}
, p(b)

}
with probability one for all t, where Xt+1 is defined by (1) and, recognizing free disposal,
storage therein is determined by It = i∗(Xt , Zt), where i∗ : S → R+ is the equilibrium
storage rule13

i∗(x, z) :=

{
x − p−1[f ∗(x, z)], if x < x∗(z)

x∗(z)− p−1(0), if x ≥ x∗(z)
(9)

with
x∗(z) := inf {x ∈ X : f ∗(x, z) = 0} .

Let C be the space of bounded, continuous, and non-negative functions f on S such that
f (x, z) is decreasing in x , and f (x, z) ≥ p(x) for all (x, z) in S. Given an equilibrium
pricing rule f ∗, let

p̄(z) := min
{
e−δ Ez M̂f

∗(Ŷ , Ẑ)− k, p(b)
}
.

The next theorem provides conditions under which the equilibrium pricing rule exists, is
uniquely defined, and gives a sharp characterization of its analytical properties.
Theorem 2.1. If Assumption 2.1 holds, then there exists a unique equilibrium pricing rule
f ∗ in the function space C . Furthermore,

(i) f ∗(x, z) = p(x) if and only if x ≤ p−1[p̄(z)],
(ii) f ∗(x, z) > max{p(x), 0} if and only if p−1[p̄(z)] < x < x∗(z),

(iii) f ∗(x, z) = 0 if and only if x ≥ x∗(z), and

(iv) f ∗(x, z) is strictly decreasing in x when it is strictly positive and e−δ Ez M̂ < 1.

In Appendix A, we show that the equilibrium pricing rule is the unique fixed point of
an operator defined by the equilibrium conditions and can be solved for via successive
approximation. In Appendix E, we design a suitable endogenous grid algorithm based on
the theory above, which allows us to solve the equilibrium objects accurately and efficiently.

The next result states properties of the equilibrium storage rule.
Proposition 2.1. If Assumption 2.1 holds, then the equilibrium storage rule i∗(x, z) is
increasing in x and continuous. Furthermore,
13Throughout, we adopt the usual convention that inf ∅ =∞.
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(i) i∗(x, z) = 0 if and only if x ≤ p−1[p̄(z)],
(ii) 0 < i∗(x, z) < x∗(z)− p−1(0) if and only if p−1[p̄(z)] < x < x∗(z),

(iii) i∗(x, z) = x∗(z)− p−1(0) if and only if x ≥ x∗(z), and

(iv) i∗(x, z) is strictly increasing in x if p−1[p̄(z)] < x < x∗(z) and e−δ Ez M̂ < 1.

Proposition 2.1 indicates that speculators hold inventories if and only if the market value
of the total available supply p(x) is below the decision threshold p̄(z). Otherwise, selling
all commodities at hand is optimal, in which case the equilibrium price is f ∗(x, z) = p(x).
Properties of the equilibrium price and storage are illustrated in Figure 2 under a linear
demand function. The equilibrium rules are sketched for a given exogenous state z .

Figure 2 – Illustration of the equilibrium price and the equilibrium storage

3. Interest Rates and Prices: Theoretical Results

This section inspects the relationship between interest rates and commodity prices from a
theoretical perspective. To this end, we assume that speculators discount future payoffs
according to market prices. In other words,

Mt =
1

Rt
, where Rt := r(Zt , εt).

Hence r is a real-valued non-negative Borel measurable function of the state process and
innovation ε. The process {Rt} is interpreted as (and will later be estimated to match)
the gross real interest rate on risk-free bonds. We therefore preserve the risk-neutrality
assumption of the standard competitive storage model, while allowing the risk-free rate
to be state-dependent. Throughout this section, we assume that the assumptions of
Section 2 are valid.
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3.1. Ordered Prices

We first state a monotonicity property concerning interest rates and prices. To this end,
we take {Rit} to be the interest rate process for economy i ∈ {1, 2}. In addition, let f ∗i
and {Pit} be the equilibrium pricing rule and the price process corresponding to {Rit}.
Proposition 3.1. If R2t ≤ R1t with probability one for all t ≥ 0, then f ∗1 ≤ f ∗2 and
P1t ≤ P2t with probability one for all t.

The intuition is straightforward. Seen from the speculative channel, lower interest rates
reduce the opportunity cost of storage. Lower storage costs encourage a build-up of
inventories. Higher demand for inventories induces higher prices.

Proposition 3.1 has limited implications because it concerns variations in interest rates
that are uniformly ordered over time. The results in the next section allow us to consider
more refined variations.

3.2. Correlations

Below we explore general conditions under which interest rates and commodity prices are
negatively correlated and discuss their necessity. As a first step, we state a key finding
concerning monotonicity of equilibrium objects with respect to the exogenous states.
Proposition 3.2. If r(z, ε) and y(z, η) are nondecreasing in z , and {Zt} is a monotone
Markov process,14 then the equilibrium pricing rule f ∗(x, z), the equilibrium inventory
i∗(x, z), and the decision threshold p̄(z) are all decreasing in z .

The intuition is as follows: If (i) a higher Zt shifts up the distribution of Zt+1 in terms of
first-order stochastic dominance and (ii) interest rates and output are both nondecreasing
in this state variable, then a high Zt today tends to generate both sustained high output
and more impatient speculators in the future. The former boosts aggregate supply, while
the latter reduces the incentive for holding inventories, which in turn reduces aggregate
demand. As a result, both inventories and prices are lower.

The assumptions of Proposition 3.2 do not restrict Rt and Yt to be strictly increasing in
Zt , nor do they impose that Rt and Yt are driven by a common factor. In particular, the
second assumption concerning monotone Markov process is standard (see Appendix B for
sufficient conditions). Below, we discuss the first assumption through examples.
Example 3.1. If {Rt} and {Yt} are iid and mutually independent, then we can set Zt ≡ 0,
εt = Rt and ηt = Yt , in which case r(z, ε) = ε and y(z, η) = η. Hence the first two
assumptions of Proposition 3.2 hold.
Example 3.2. If {Rt} and {Yt} are autocorrelated and mutually independent, then we can
write Zt as Zt = (Z1t , Z2t), where {Z1t} and {Z2t} are mutually independent, possibly

14Here monotonicity is defined in terms of first-order stochastic dominance. See Appendix B for its formal
definition.
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multi-dimensional Markov chains, and Rt = r(Z1t , εt) and Yt = y(Z2t , ηt). In this case,
the first assumption of Proposition 3.2 holds as long as r is nondecreasing in Z1t and y
is nondecreasing in Z2t .
Example 3.3. If {Rt} and {Yt} are finite Markov processes, then we can set εt = ηt ≡ 0
and define Zt = (Rt , Yt), in which case the first assumption of Proposition 3.2 holds
automatically, while the second assumption holds as long as {Rt} and {Yt} are monotone
and non-negatively correlated Markov processes.

We can now state our main result concerning correlation. In doing so, we suppose that
Zt = (Z1t , . . . , Znt) takes values in Rn.
Proposition 3.3. If the conditions of Proposition 3.2 hold and {Z1t , . . . , Znt} are inde-
pendent for each fixed t, then

Covt−1(Pt , Rt) ≤ 0 for all t ∈ N.

As Proposition 3.2 illustrates, when interest rates and output are both positively affected
by the monotone exogenous state process, commodity prices will be negatively affected by
the exogenous state. Therefore, there is a trend of comovement (in opposite directions)
between commodity price and interest rate, resulting in a negative correlation. The proof
of Proposition 3.3 relies on the Fortuin–Kasteleyn–Ginibre inequality.
Remark 3.1. The extra independence-across-dimensions condition in Proposition 3.3 can-
not be omitted. In Appendix C, we provide examples showing that if {Z1t , . . . , Znt} are
positively or negatively correlated for some t ∈ N, then interest rates and prices can be
positively correlated even under elementary scenarios. This is because the contemporane-
ous correlation between different dimensions of Zt could disrupt the trend of comovement
of interest rates and commodity prices. In general, a contemporaneous correlation of
different dimensions of Zt can either strengthen or weaken the impact of interest rates
on commodity prices, yielding rich model dynamics.
Remark 3.2. In Appendix B, we show that Proposition 3.3 can be extended to the gen-
eral setting of Section 2, where agents are not necessarily risk neutral. In other words,
Covt−1(Pt ,Mt) ≥ 0 holds with or without the assumption of risk neutrality.
Example 3.4. (The Speculative Channel). In applications {Rt} typically follows a
Markov process, while {Yt} represents a sequence of supply shocks (e.g., harvest fail-
ures, conflicts around oil production sites, so on), which is iid and less likely to be affected
by the monetary conditions (see, e.g., Deaton and Laroque, 1992; Cafiero et al., 2015).
Hence, {Rt} and {Yt} are mutually independent. In this case, all the effects of interest
rates on commodity prices transit through commodity speculation. By letting Zt = Rt ,
εt ≡ 0 and ηt = Yt , we have r(z, ε) = z and y(z, η) = η. Hence, all the assumptions
of Proposition 3.3 hold as long as {Rt} is a finite monotone Markov process (e.g., a
discrete version of a positively correlated AR(1) process) and Assumption 2.1 holds (see
the next section). In this case, Proposition 3.3 implies that interest rates are negatively
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correlated with commodity prices, which matches the empirical results of Frankel (1986,
2008a, 2014).
Example 3.5. (The Global Demand Channel). Since the output of the commodity,
Yt , enters linearly in total availability, it can be redefined as a linear combination of two
shocks: Yt = Y St −Y Dt , where Y St is the supply shock and Y Dt is the demand shock. Hence
Yt can be interpreted as a net supply shock. There is widespread evidence that both
types of shocks matter in commodity markets, albeit with relative importance depending
on the commodities (see, e.g., Kilian, 2009; Gouel and Legrand, 2022). Unlike supply
shocks, demand shocks are likely to be affected by monetary policies. Since interest
rates affect global demand (Ramey, 2016), an interest rate shock leads to an aggregate
demand shock that affects all commodities.15 If interest rates follow a Markov process it
implies that Zt = (Rt , Z2t) and Yt = y(Z2t , ηt), where {Z2t} is a Markov process that is
correlated with {Rt}. Hence, Zt is contemporaneously correlated and the independence-
across-dimensions condition of Proposition 3.3 fails. However, the theory of Section 2
still applies and can be used to quantify the impact of interest rates on commodity prices.

4. Quantitative Analysis

As one application of our theory, we study the impact of interest rates on commodity
prices through the speculative channel. To this end, we shut down the other channels,
such as global demand, and use a stylized model that requires a minimum number of
parameters to characterize its behavior.16 We calibrate the model to quarterly setting in
order to limit the number of state variables.17

The main takeaways from this section are fourfold. First, impulse response functions
(IRFs) show that prices fall immediately after a positive interest rate shock and slowly
converge to their long-run average. Second, inventories fall more slowly after the shock
and converge back to their long-run average even more slowly than prices. Third, price
volatility is sensitive to inventory dynamics: a larger response in inventory tends to generate
an inversely larger response in price volatility. Fourth, the strength of these IRFs is highly
state-dependent, being stronger for high availabilities and/or low interest rates.

15Even if the demand shock is an aggregate shock common to all commodities, its effect is likely different
depending on the commodities. Demand for food commodities might be little sensitive to GDP shocks due
to their low income elasticity. However, metals and energy commodities could be more responsive to global
demand shocks since they are used substantially as intermediate inputs.
16Gouel and Legrand (2022) show that fitting most moments of a commodity market requires a rich storage
model with supply reaction, autocorrelated shocks, and news shocks. Since most of these elements are
specific to each commodity market and orthogonal to the question studied here, we abstract for them and
focus on a model with only 2 free parameters.
17A monthly real interest rate process requires a rich autoregressive structure, introducing many lags.
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4.1. Specification

For simulating the model, we adopt a linear demand function

p (x) = p̄ [1 + (x/µY − 1) /λ] , (10)

where p̄ > 0 is the steady-state price,18 µY > 0 is the mean of the commodity output
process (so also the steady-state consumption level), and λ < 0 is the price elasticity
of demand. We assume that all storage costs are related to depreciation (i.e., k = 0
and δ ≥ 0). As Gouel and Legrand (2022) show, when calibrated to represent the same
proportion of the steady-state price, these two types of storage costs have indistinguishable
effects on price moments, so focusing only on one of the two involves no loss of generality.

In addition, we assume that the interest rate follows the first order autoregressive process

Rt = µR(1− ρR) + ρRRt−1 + σR
√
1− ρ2R ε

R
t , {εRt }

iid∼ N(0, 1), (11)

and that commodity output, {Yt}, follows a truncated normal distribution with mean
µY , standard deviation µY σY , truncated at 5 standard deviations. The truncation of the
distribution (also adopted, inter alia, in Deaton and Laroque, 1992) ensures a lower bound
for commodity output and total available supply. This set up is a very special case of the
theoretical framework established in Section 3, with εt ≡ 0, ηt = Yt , Zt = Rt , r(Zt , εt) =
Zt = Rt and y(Zt , ηt) = ηt = Yt . In this setting, r(z, ε) and y(z, η) are increasing in z .
Below we estimate the interest rate process and show that ρR > 0 (implying that {Rt}
is a monotone Markov process) and that the discount condition in Assumption 2.1 holds.
Hence, all the statements of Theorem 2.1 and Propositions 2.1 and 3.2 are valid. Since
we have assumed that {Rt} is independent of {Yt} to focus explicitly on the speculative
channel, the assumptions (and thus conclusions) of Proposition 3.3 also hold.

This choice of parameterization limits the free parameters that matter in the analysis of
price movements to δ and λ. Indeed, the interest rate process is estimated on observations,
and in this setup in which we will only analyze price movements, adjusting the intercept
and slope of the demand function is equivalent to adjusting the mean and variance of the
output process (see the proof in Appendix D, which is a generalization of Proposition 1 of
Deaton and Laroque, 1996). In addition, we can normalize p̄ and µY to any values since
their effect is only to set the average price and quantity levels. To clarify the interpretation
of the simulations, we normalize p̄ and µY to 1, and σY to 0.05.19

To calibrate the real interest rate process, we use the one-year treasury yield and a measure
of expected inflation. We use the one-year rather than the 3-month treasury yield because
18If not otherwise specified, we designate by steady state the equilibrium in the absence of shocks when the
agents do not expect any shocks.
19According to Gouel and Legrand (2022), a coefficient of variation of 5% for the net-supply shock is slightly
above the total shock (demand plus supply) affecting the aggregate crop market of maize, rice, soybeans,
and wheat, but below the shocks affecting each of these markets individually.
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Figure 3 – κ(M) values under different (µR, ρR, σR)

the latter would lead to lower average real interest rates. Adopting a slightly higher interest
rate than the risk-free 3-month rate but with similar dynamics allows us to represent the
fact that, in reality, speculators pay a premium above the risk-free rate (also captured
here by δ). Expected inflation is calculated through an autoregressive model estimated
on a 30-year window prior to the year of interest to account for changes in the dynamics
of inflation.20 This is the real interest rate represented in Figure 1. After converting
the annual rate into a quarterly rate, the maximum likelihood estimation of (11) yields
µR = 1.0015, ρR = 0.9407, and σR = 0.0074.

These results imply that the stationary mean of the net real interest rate process is about
0.15% (corresponding to an annual rate of 0.6%), with unconditional standard deviation
slightly below 1%. In reality speculators may face higher interest rates than the risk-free
rates we consider here, but any constant spread above the risk-free rates can be captured
in our model by δ, so when interpreting the values of δ in what follows, it should be
kept in mind that δ represents at the same time storage costs, spread above risk-free
rates, and also any long-run trend in commodity prices.21 We discretize the interest rate
process (11) into an N-state Markov chain using the method of Tauchen (1986). To
achieve high precision we set N = 101 in the applications.

Our first step is to verify Assumption 2.1, which requires κ(M) > −δ. Figure 3 plots κ(M)
calculated at different (µR, ρR, σR) values.22 In the left panel, we fix ρR at its estimated
value and create a contour plot of κ(M) for (µR, σR). In the right panel, we fix σR at its
estimated value and plot κ(M) as a function of (ρR, µR). The figure shows that κ(M) is
increasing in µR and decreasing in σR and ρR. In general, κ(M) > −δ fails only when µR
is sufficiently low, or when ρR or σR is very large. The black solid curves represent the
thresholds at which κ(M) = −0.02,−0.01, 0, respectively. Clearly, Assumption 2.1 holds

20Using lagged inflation or ex-post inflation would lead to a similar real interest rate process.
21See Bobenrieth et al. (2021) for an analysis of the role of commodity price trends in the storage model.
22The method for computing κ(M) is described in Lemma A.1 of Appendix A.
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Figure 4 – Unconditional moments (dot point corresponds to δ = 0.02 and λ = −0.06)

at the estimated (µR, ρR, σR) values even when δ = 0.

Having verified Assumption 2.1, we solve for the equilibrium pricing rule using the following
methods. Expectation terms are replaced by simple sums using the interest rate Markov
chain and a 7-point Gaussian quadrature for the output process. Starting from a guessed
initial solution, the pricing rule is found by iterating with the equilibrium price operator,
which is globally convergent by Theorem A.1 in the appendix. To maximize both accuracy
and efficiency when iterating, we apply a suitably modified version of the endogenous
grid method (Carroll, 2006).23 Details of the algorithm and computation are given in
Appendix E.

4.2. Experiments

Unless otherwise specified, results are presented assuming δ = 0.02 and λ = −0.06.
This combination of parameters leads to the following price moments on the asymptotic
distribution: a coefficient of variation of 24%, a first-order autocorrelation of 0.61, and
a skewness of 2.9. In order to clarify how these parameters influence price moments,
Figure 4 presents the contour plots of coefficient of variation and autocorrelation for
a range of values for δ and λ. The coefficient of variation is primarily determined by
demand elasticity, and secondarily by storage costs. The autocorrelation of price is jointly
determined by both parameters. An increase in the absolute value of either of them will
lead to a lower autocorrelation.

Since the Markov process we adopt here is symmetric around the mean, the main quanti-
tative implications of time-varying interest rates are seen in conditional moments, which

23When applying the endogenous grid method for time iteration, we use a 100-point exponential grid for It
in the range of [0, 2] with median value 0.5. Function approximation is implemented via linear interpolation.
We terminate the iteration process at precision 10−4.
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we explore below with impulse response functions (IRFs). To capture the nonlinear dy-
namics generated by the storage model, we follow Koop et al. (1996) and define IRFs as
state-and-history-dependent random variables. We calculate the IRFs to a 25 bp interest
rate impulse (i.e., a 0.25% increase in the real interest rate). All IRFs represent percent-
age deviation from the benchmark simulation. Detailed discussion of the algorithm and
computation are left to Appendix E.

Figure 5 shows the IRFs calculated at the stationary mean of (Xt−1, Rt−1). The IRFs for
prices show an immediate price decrease followed by a gradual convergence to the long-run
average over 2 to 4 years. A 25 bp increase in the real interest rate decreases prices at
most by −1.62% for the lowest storage costs. The effects decrease with storage costs:
the higher the storage costs, the lower the initial decline and the faster the convergence.
The cheaper the physical storage costs, the more important the opportunity costs are and
so the more interest rate variations weight on storage behavior and prices. Similarly, the
effects strengthen the more inelastic is the demand function, because prices react much
more to the sales of stock with a more inelastic demand. All combinations of parameters
are considered in Figure 6, which displays the contemporaneous impulse of prices to a
25 bp increase in real rates. The figure shows that combinations of low storage costs and
inelastic demand can lead to price decreases in excess of 2%.

Figure 5 also shows the IRFs for inventories, allowing us to clarify the mechanisms behind
the price decrease. Unlike prices, inventories reach their lowest value more than a year
after the shock, and even after 4 years they have not returned to their long-run values.
When the interest rate increases, speculators tend to dispose of their costlier stocks. This
selling decreases current prices because of the added market supply, mitigating sale of
stock relative to constant prices. In subsequent periods, stocks are excessive given the
persistence of opportunity costs and speculators continue selling them. Again, the price
decrease mitigates the sale. After more than a year of this dynamic, with increasingly
smaller quantities sold from inventories, interest rates have decreased, easing the cost
pressure to sell inventories, and prices are lower than their long-run values with expecta-
tions of converging back. So stock accumulation gradually increases with lower interest
rates. Since the stock accumulation is slow in our example, prices converge to their long-
run values from below without overshooting (although overshooting is possible). After 4
years, prices have converged to their long-run values, so the only driver of stock increase
is the convergence of interest rate to its long-run average.

Stock levels present a different sensitivity to storage costs and demand elasticity. Stocks
decrease more with an increase in interest rate when storage costs are lower because, in
such settings, stock levels are higher on average and more sensitive to variation in the
opportunity costs. Stocks decrease less for a more inelastic demand. This is explained
by the fact that with a more inelastic demand, a small increase of sales from inventory
depresses prices much more, limiting the incentives to sell too much from the stocks.
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Figure 5 – IRFs for a 25 bp real interest rate shock under different parameter setups
(fixing Xt−1 and Rt−1 at the stationary mean)
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The right panels of Figure 5 display the IRFs for price volatility, namely, the conditionally
expected standard deviation of price.24 It shows that price volatility mostly follows stock
dynamics with a peak attained after a year and an incomplete convergence after 4 years.
A larger response in storage generates an oppositely larger response in price volatility.
These results match the empirical results of Gruber and Vigfusson (2018) who show that
higher interest rates imply higher price volatility.

To explore the sensitivity of IRFs to states, Figure 7 draws the IRFs calculated for different
realized values of (Xt−1, Rt−1). We use (Xpt−1, R

p
t−1) to denote the percentile points of the

realized (Xt−1, Rt−1) states on the stationary distribution. The top left panel shows that
price responses are stronger when availability becomes larger. The immediate responses
of price are respectively 1.72 and 2.17 times larger when availability increases from the
25% percentile to the 75% and 95% percentiles. This is because when availability is lower,
inventory tends to be lower (Proposition 2.1), hence there is less room for stock adjustment
and prices react much less in response to the interest rate shock. This intuition is verified
by the top middle panel, which shows that a higher availability causes stock decumulation
to last longer, yielding a larger decline in inventory in the medium to long run (in spite of
a slightly lower immediate decline).

The bottom left panel in Figure 7 shows that price responses to a 25 bp interest rate
shock tend to be slightly larger when interest rates are relatively lower. The overall trend
of price and storage IRFs in the bottom panels of Figure 7 is consistent with our theory
(Proposition 3.2), which shows that under lower interest rates, prices and inventories are
in general higher and therefore more sensitive to variations in opportunity costs.

Same to the previous cases, the right panels of Figure 7 show that the dynamics of
price volatility are highly consistent with the inventory dynamics, with a larger response in
speculative storage causing an oppositely larger response in price volatility.

5. Conclusion

This paper extends the classical competitive storage model to the setting where interest
rates are time-varying. We developed a unified theory of how interest rates and other
aggregate factors affect commodity prices. We proposed readily verifiable conditions
under which a unique equilibrium solution exists and can be efficiently computed. These
conditions have natural interpretation in terms of the asymptotic yield on long maturity
risk-free assets. We also provided a sharp characterization of the analytical properties of
the equilibrium objects, and developed an efficient solution algorithm.

Within this framework, we studied the dynamic causal effect of interest rates on commod-
ity prices. On the theoretical side, we established conditions under which interest rates
24Mathematically, the price volatility is defined here as the square root of the conditional variance:√
Et−1[f ∗(Xt , Zt)]2 − [Et−1 f ∗(Xt , Zt)]2.
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Figure 7 – IRFs for a 25 bp real interest rate shock conditional on different states

and commodity prices are negatively correlated. On the quantitative side, we applied our
theory to examine the impact through the speculative channel. Impulse response analysis
showed that interest rates have a nontrivial and persistent negative effect on commod-
ity prices in most empirically relevant settings. Moreover, the magnitude of the effect
depends substantially on the prevailing market supply and interest rate regime.

The quantitative application in the current paper focuses on the speculative channel.
Exploring (i) the impact of interest rates on commodity prices through various other
channels (such as the global demand channel), and (ii) the impact of more sophisticated
stochastic discount factors (as found, for example, in Schorfheide et al., 2018) and risky
returns are equally important. While these topics are beyond the scope of the current
paper, the theory presented here lays a solid foundation for new work along these lines.
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Appendix

A. Proof of Section 2 Results

Here and in the remainder of the appendix, we let Φ be the probability transition matrix
of {Zt}. In particular, Φ(z, ẑ) denotes the probability of transitioning from z to ẑ in one
step. Recall Mt defined in (6). We denote Ez := E(· | Z = z) and Eẑ := E(· | Ẑ = ẑ),
and introduce the matrix L defined by

L(z, ẑ) := Φ (z, ẑ)Eẑ m(ẑ , ε̂). (A1)

Here L is expressed as a function on Z × Z but can be represented in traditional matrix
notation by enumerating Z. Specifically, if Z = {z1, . . . , zN}, then L = ΦD, where
D := diag {Ez1M, . . . ,EzN M}.

For a square matrix A, let s(A) denote its spectral radius. In other words, s(A) :=
maxα∈Λ |α|, where Λ is the set of eigenvalues of A.
Lemma A.1. Given L defined in (A1), the asymptotic yield satisfies κ(M) = − ln s(L).

Proof. By induction, we can show that, for any function h : Z→ R and n ∈ N,

Lnh(z) = Ez

(
n∏
t=1

Mt

)
h(Zn), (A2)

where Ln is the n-th composition of the operator L with itself or, equivalently, the n-th
power of the matrix L. By Theorem 9.1 of Krasnosel’skii et al. (2012) and the positivity
of L, we have

s(L) = lim
n→∞
∥Lnh∥1/n, (A3)

where h is any function on Z that takes positive values, and ∥ · ∥ is any norm on the set
of real-valued functions defined on Z. Letting h ≡ 1 and ∥f ∥ := E |f (Z0)|, we obtain

s(L) = lim
n→∞

(
E

∣∣∣∣∣EZ0
n∏
t=1

Mt

∣∣∣∣∣
)1/n

= lim
n→∞

(
E

n∏
t=1

Mt

)1/n
= lim
n→∞

q1/nn ,

where the first and the last equalities are by definition, and the second equality is due
to the Markov property. Since the log function is continuous, we then have ln s(L) =
limn→∞ ln qn/n = −κ(M) and the claim follows.

Corollary A.1. Assumption 2.1 holds if and only if s(L) < eδ.

This follows directly from κ(M) = − ln s(L). Below we routinely use the alternative
version s(L) < eδ for Assumption 2.1.
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In the main text we imposed p(b) <∞ to simplify analysis. Here and below, we relax this
assumption. We assume instead p(b) ≤ ∞, and prove that all the theoretical results in
Sections 2–3 still hold in this generalized setup. To that end, we assume that

Ez max{p(Y ), 0} <∞ for all z ∈ Z. (A4)

(This mild assumption confines the expected market value of commodity output to be
finite and holds trivially in the setting of Section 2, where p is bounded above.) We then
update the endogenous state space X and define it as

X :=

{
(b,∞), if p(b) =∞,
[b,∞), if p(b) <∞.

There is no loss of generality to truncate the endogenous state space when p(b) = ∞,
because in this case, (A4) implies that Yt > b almost surely, and thus Xt > b with
probability one for all t.

Let p0(x) := max{p(x), 0} and let C be all continuous f : S→ R such that f is decreasing
in its first argument, f (x, z) ≥ p0(x) for all (x, z) ∈ S, and

sup
(x,z)∈S

|f (x, z)− p0(x)| <∞.

Obviously, C reduces to the candidate space in Theorem 2.1 when the demand function
p is bounded above, i.e., when p(b) <∞. To compare pricing policies, we metrize C via

ρ(f , g) := ∥f − g∥ := sup
(x,z)∈S

|f (x, z)− g(x, z)|.

Although f and g are not required to be bounded, one can show that ρ is a valid metric
on C and that (C , ρ) is a complete metric space (see, e.g., Ma et al., 2020).

We aim to characterize the equilibrium pricing rule as the unique fixed point of the equi-
librium price operator described as follows: For fixed f ∈ C and (x, z) ∈ S, the value of
T f at (x, z) is defined as the ξ ≥ p0(x) that solves

ξ = ψ(ξ, x, z) := min
{
max

{
e−δ Ez M̂f

(
e−δI(ξ, x, z) + Ŷ , Ẑ

)
− k, p(x)

}
, p(b)

}
,

(A5)
where, considering free disposal,

I(ξ, x, z) :=

{
x − p−1(ξ), if x < x∗f (z)

x∗f (z)− p−1(ξ), if x ≥ x∗f (z)
(A6)

with

x∗f (z) := inf
{
x ≥ p−1(0) : e−δ Ez M̂f

(
e−δ[x − p−1(0)] + Ŷ , Ẑ

)
− k = 0

}
.

26



The domain of ψ is
G := {(ξ, x, z) ∈ R+ × S : ξ ∈ B(x)} , (A7)

where B(x) is defined for each x as

B(x) :=

{
[p0(x),∞), if p(b) =∞,
[p0(x), p(b)], if p(b) <∞.

(A8)

Proposition A.1. If f ∈ C and (x, z) ∈ S, then T f (x, z) is uniquely defined.

Proof. Fix f ∈ C and (x, z) ∈ S. Since f is decreasing in its first argument and p−1 is
decreasing (by the inverse function theorem), the map ξ 7→ ψ(ξ, x, z) is decreasing. Since
the left-hand-side of equation (A5) is strictly increasing in ξ, (A5) can have at most one
solution. Hence, uniqueness holds. Existence follows from the intermediate value theorem
provided we can show that

(a) ξ 7→ ψ(ξ, x, z) is a continuous function,

(b) there exists ξ ∈ B(x) such that ξ ≤ ψ(ξ, x, z), and

(c) there exists ξ ∈ B(x) such that ξ ≥ ψ(ξ, x, z).

For part (a), it suffices to show that

g(ξ) := Ez M̂f
(
Ŷ + e−δI(ξ, x, z), Ẑ

)
is continuous on B(x). To see this, fix ξ ∈ B(x) and ξn → ξ. Since f ∈ C , there exists
D ∈ R+ such that

0 ≤ M̂f
(
Ŷ + e−δI(ξn, x, z), Ẑ

)
≤ M̂f (Ŷ , Ẑ) ≤ M̂ [p0(Ŷ ) +D].

Since Ez M̂p0(Ŷ ) = Ez
[
Eẑ M̂ Eẑ p0(Ŷ )

]
, the last term is integrable by (A4). Hence, the

dominated convergence theorem applies. From this fact and the continuity of f , p−1, and
I, we obtain g(ξn)→ g(ξ). Hence, ξ 7→ ψ(ξ, x, z) is continuous.

Regarding part (b), consider ξ = p0(x). If p(x) ≥ 0, then ξ = p(x) and thus

ψ(ξ, x, z) ≥ min{p(x), p(b)} = p(x) = ξ.

If p(x) < 0, then ξ = 0. In this case, I(ξ, x, z) = I(0, x, z) ≤ x∗f (z) − p−1(0). The
monotonicity of f and the definition of x∗f then imply that

e−δ Ez M̂f
(
e−δI(ξ, x, z) + Ŷ , Ẑ

)
− k ≥ e−δ Ez M̂f

(
e−δ[x∗f (z)− p−1(0)] + Ŷ , Ẑ

)
− k = 0.

By the definition of ψ,

ψ(ξ, x, z) ≥ min{max{0, p(x)}, p(b)} = min{0, p(b)} = 0 = ξ.
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We have now verified part (b).

If p(b) <∞, then part (c) holds by letting ξ = p(b). If p(b) =∞, then part (c) holds as
ξ gets large since ξ 7→ ψ(ξ, x, z) is decreasing and bounded.

In summary, we have verified both existence and uniqueness.

Proposition A.2. T f ∈ C for all f ∈ C .

Proof. Fix f ∈ C and define g(ξ, x, z) := Ez M̂f
(
Ŷ + e−δI(ξ, x, z), Ẑ

)
.

First, we show that T f is continuous. To this end, we first show that ψ in (A5) is jointly
continuous on the set G defined in (A7). This will be true if g is jointly continuous on G.
For any {(ξn, xn, zn)} and (ξ, x, z) in G with (ξn, xn, zn)→ (ξ, x, z), we need to show that
g(ξn, xn, zn)→ g(ξ, x, z). Define

h1(ξ, x, z, Ẑ, ε̂, η̂), h2(ξ, x, z, Ẑ, ε̂, η̂) := M̂f (Ŷ , Ẑ)± M̂f
(
Ŷ + e−δI(ξ, x, z), Ẑ

)
,

where M̂ := m(Ẑ, ε̂) and Ŷ = y(Ẑ, η̂). Then h1 and h2 are continuous in (ξ, x, z, Ẑ)
by the continuity of f , p−1, and I, and non-negative by the monotonicity of f in its first
argument.

Let πε and πη denote respectively the probability measure of {εt} and {ηt}. Fatou’s
lemma and Theorem 1.1 of Feinberg et al. (2014) imply that∫ ∫ ∑

ẑ∈Z

hi(ξ, x, z, ẑ , ε̂, η̂)Φ(z, ẑ)πε d(ε̂)πη d(η̂)

≤
∫ ∫

lim inf
n→∞

∑
ẑ∈Z

hi(ξn, xn, zn, ẑ , ε̂, η̂)Φ(zn, ẑ)πε(d ε̂)πη(d η̂)

≤ lim inf
n→∞

∫ ∫ ∑
ẑ∈Z

hi(ξn, xn, zn, ẑ , ε̂, η̂)Φ(zn, ẑ)πε(d ε̂)πη(d η̂).

Since in addition z 7→ Ez M̂f (Ŷ , Ẑ) is continuous, we have

±Ez M̂f
(
Ŷ + e−δI(ξ, x, z), Ẑ

)
≤ lim inf

n→∞

(
±Ezn M̂f

(
Ŷ + e−δI(ξn, xn, zn), Ẑ

))
.

Then g is continuous, since the above inequality is equivalent to

lim sup
n→∞

g(ξn, xn, zn) ≤ g(ξ, x, z) ≤ lim inf
n→∞

g(ξn, xn, zn).

Hence, ψ is continuous on G, as was to be shown. Since ξ 7→ ψ(ξ, x, z) takes values in

Γ(x, z) :=
[
p0(x), min

{
p(b), p0(x) + e

−δ
Ez M̂(p0(Ŷ ) +D)

}]
for some D ∈ R+, and the correspondence (x, z) 7→ Γ(x, z) is nonempty, compact-valued
and continuous, Theorem B.1.4 of Stachurski (2009) implies that T f is continuous on S.
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Second, we show that T f is decreasing in x . Suppose for some z ∈ Z and x1, x2 ∈ X

with x1 < x2, we have ξ1 := T f (x1, z) < Tf (x2, z) =: ξ2. Since f is decreasing in its first
argument by assumption and I defined in (A6) is increasing in ξ and x , ψ is decreasing in
ξ and x . Then ξ2 > ξ1 = ψ(ξ1, x1, z) ≥ ψ(ξ2, x2, z) = ξ2, which is a contradiction.

Third, we show that sup(x,z)∈S |T f (x, z)− p0(x)| <∞. This obviously holds since

|T f (x, z)− p0(x)| = T f (x, z)− p0(x)
≤ e−δ Ez M̂f

(
Ŷ + e−δI (T f (x, z), x, z) , Ẑ

)
≤ e−δ Ez M̂[p0(Ŷ ) +D]

for all (x, z) ∈ S and some D ∈ R+, and the last term is finite by (A4).

Finally, Proposition A.1 implies that T f (x, z) ∈ B(x) for all (x, z) ∈ S. In conclusion, we
have shown that T f (x, z) ∈ C .

Lemma A.2. T is order preserving on C . That is, T f1 ≤ T f2 for all f1, f2 ∈ C with f1 ≤ f2.

Proof. Let f1, f2 be functions in C with f1 ≤ f2. Recall ψ defined in (A5). With a slight
abuse of notation, we define ψf such that ψf (T f (x, z), x, z) = T f (x, z) for f ∈ {f1, f2}.
Then f1 ≤ f2 implies that ψf1 ≤ ψf2. Suppose to the contrary that there exits (x, z) ∈ S

such that ξ1 := T f1(x, z) > Tf2(x, z) = ξ2.

Since we have shown that ξ 7→ ψ(ξ, x, z) is decreasing for each f ∈ C and (x, z) ∈ S,
we have ξ1 = ψf1(ξ1, x, z) ≤ ψf2(ξ1, x, z) ≤ ψf2(ξ2, x, z) = ξ2, which is a contradiction.
Therefore, T is order preserving.

Lemma A.3. There exist N ∈ N and α < 1 such that, for all n ≥ N,

max
z∈Z

Ez

n∏
t=1

e−δMt < αn.

Moreover, D1 :=
∑∞
t=0maxz∈ZEz

∏t
i=1 e

−δMi <∞.

Proof. The second inequality follows immediately from the first inequality. To verify the
first inequality, note that letting h ≡ 1 and ∥f ∥ = maxz∈Z |f (z)| in (A3) yields

s(L) = lim
n→∞

(
max
z∈Z

Ez

n∏
t=1

Mt

)1/n
.

Since e−δs(L) < 1 by Corollary A.1, there exists N ∈ N and α < 1 such that for all
n ≥ N,

e−δ

(
max
z∈Z

Ez

n∏
t=1

Mt

)1/n
=

(
max
z∈Z

Ez

n∏
t=1

e−δMt

)1/n
< α.

Hence, the first inequality holds, and the proof is now complete.
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To simplify notation, for given Ŷ , we denote

h(ξ, x, z) := Ŷ + e−δI(ξ, x, z) and g(ζ, x) := min {max{ζ, p(x)}, p(b)} .

By definition, ξ 7→ h(ξ, x, z) and ζ 7→ g(ζ, x) are increasing given (x, z).
Lemma A.4. For all m ∈ N and (x, z) ∈ S, we have

Tm(f + γ)(x, z) ≤ Tmf (x, z) + γ Ez
m∏
t=1

e−δMt . (A9)

Proof. Fix f ∈ C , γ ≥ 0, and let fγ(x, z) := f (x, z) + γ. By the definition of T ,

T fγ(x, z) = g
[
e−δ Ez M̂fγ

(
h[T fγ(x, z), x, z ], Ẑ

)
, x
]

≤ g
[
e−δ Ez M̂f

(
h[T fγ(x, z), x, z ], Ẑ

)
, x
]
+ γ Ez e

−δM̂

≤ g
[
e−δ Ez M̂f

(
h[T f (x, z), x, z ], Ẑ

)
, x
]
+ γ Ez e

−δM̂,

where the second inequality is due to the fact that f ≤ fγ and T is order preserving.
Hence, T (f + γ)(x, z) ≤ T f (x, z) + γ Ez e

−δM̂ and (A9) holds for m = 1. Suppose
(A9) holds for arbitrary m. It remains to show that it holds for m + 1. For z ∈ Z, let
ℓ(z) := γ Ez

∏m
t=1 e

−δMt . By the induction hypothesis, Lemma A.2, and the Markov
property,

Tm+1fγ(x, z) = g
[
e−δ Ez M̂(T

mfγ)
(
h[Tm+1fγ(x, z), x, z ], Ẑ

)
, x
]

≤ g
[
e−δ Ez M̂(T

mf + ℓ)
(
h[Tm+1fγ(x, z), x, z ], Ẑ

)
, x
]

≤ g
[
e−δ Ez M̂(T

mf )
(
h[Tm+1fγ(x, z), x, z ], Ẑ

)
, x
]
+Ez e

−δM1ℓ(Z1)

≤ Tm+1f (x, z) + γ Ez e−δM1EZ1 e−δM1 · · · e−δMm

= Tm+1f (x, z) + γ Ez

m+1∏
t=1

e−δMt .

Hence (A9) holds by induction.

Theorem A.1. If Assumption 2.1 holds, then T is well defined on the function space C ,
and there exists an n ∈ N such that T n is a contraction mapping on (C , ρ). Moreover,

(i) T has a unique fixed point f ∗ in C .

(ii) The fixed point f ∗ is the unique equilibrium pricing rule in C .

(iii) For each f in C , we have ρ(T k f , f ∗) as k →∞.

Proof. Proposition A.1 shows that T is a well-defined operator on C . Since T is order
preserving by Lemma A.2 and C is closed under the addition of non-negative constants,
to show that T n is a contraction mapping on (C , ρ) for some n ∈ N, based on Blackwell
(1965), it remains to verify the existence of n ∈ N and θ < 1 such that T n(f + γ) ≤
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T nf +θγ for all f ∈ C and γ ≥ 0. This obviously holds by Lemmas A.3–A.4, implying that
T n is a contraction on (C , ρ) of modulus θ. Claims (i)–(iii) then follow from the Banach
contraction mapping theorem and the definition of the equilibrium pricing rule.

For each f in C , we define

p̄0f (z) := e
−δ
Ez M̂f (Ŷ , Ẑ)− k and p̄f (z) := min{p̄0f (z), p(b)}.

Lemma A.5. For each f in C , T f satisfies

(i) T f (x, z) = p(x) if and only if x ≤ p−1[p̄f (z)],
(ii) T f (x, z) > p0(x) if and only if p−1[p̄f (z)] < x < x∗f (z), and

(iii) T f (x, z) = 0 if and only if x ≥ x∗f (z).

Proof. Regarding claim (i), suppose T f (x, z) = p(x). We show that x ≤ p−1[p̄f (z)].
Note that in this case, x ≤ p−1(0) ≤ x∗f (z) since p(x) = T f (x, z) ≥ 0. Hence,

I [T f (x, z), x, z ] = x − p−1[T f (x, z)] = 0.

When x = b, the proof is trivial. When x > b, we have T f (x, z) = p(x) < p(b). By the
definition of T ,

p(x) = T f (x, z) = max
{
e−δ Ez M̂f

(
e−δI [T f (x, z), x, z ] + Ŷ , Ẑ

)
− k, p(x)

}
= max

{
e−δ Ez M̂f (Ŷ , Ẑ)− k, p(x)

}
= max

{
p̄0f (z), p(x)

}
.

This implies that p(x) ≥ p̄0f (z) ≥ p̄f (z). Hence x ≤ p−1[p̄f (z)].

Next, we prove that x ≤ p−1[p̄f (z)] implies T f (x, z) = p(x). If p̄0f (z) ≥ p(b), then

p̄f (z) = p(b) =⇒ x ≤ p−1[p̄f (z)] = p−1[p(b)] = b.

Hence x = b. Then by definition T f (x, z) = min{p̄0f (z), p(b)} = p(b) = p(x).

If p̄0f (z) < p(b), then p̄f (z) = p̄0f (z). Since in addition

p̄0f (z) ≥ e−δ Ez M̂p(Ŷ )− k > 0 and x ≤ p−1[p̄f (z)],

we have x < p−1(0) ≤ x∗f (z) in this case. Suppose to the contrary that T f (x, z) > p(x)

for some (x, z) ∈ S. Then by the definition of T ,

p(x) < e−δ Ez M̂f
[
e−δ
(
x − p−1[T f (x, z)]

)
+ Ŷ , Ẑ

]
− k.

The monotonicity of f in its first argument then implies that

p(x) < e−δ Ez M̂f (Ŷ , Ẑ)− k = p̄0f (z) = p̄f (z),
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which is a contradiction. Claim (i) is now verified.

Note that claim (ii) follows immediately once claim (iii) is verified. To see that claim (iii)
is true, suppose to the contrary that x ≥ x∗f (x) and T f (x, z) > 0 for some (x, z) ∈ S.
Then

I [T f (x, z), x, z ] = x∗f (z)− p−1[T f (x, z)] > x∗f (z)− p−1(0).

By the definition of x∗f (z) and the monotonicity of f , this gives

e−δ Ez M̂f
(
e−δI [T f (x, z), x, z ] + Ŷ , Ẑ

)
− k ≤ 0.

Using the definition of T , we obtain 0 < Tf (x, z) ≤ min{max{0, p(x)}, p(b)} = 0, which
is a contradiction. Hence, x ≥ x∗f (z) implies T f (x, z) = 0.

Now suppose T f (x, z) = 0. The definition of T implies that

e−δ Ez M̂f
(
e−δI(0, x, z) + Ŷ , Ẑ

)
− k ≤ 0.

By the definition of x∗f (z), this gives x ≥ x∗f (z). Claim (iii) is now verified.

Proof of Theorem 2.1. Theorem A.1 implies that there exists a unique equilibrium pricing
rule f ∗ in C . Claims (i)–(iii) follow immediately from Lemma A.5 since p̄(z) = p̄f ∗(z) and
f ∗ is the unique fixed point of T in C .

To see that claim (iv) holds, suppose f ∗(x, z) is not strictly decreasing under the given
conditions. Then by claims (i)–(iii), there exists z ∈ Z with e−δ Ez M̂ < 1 and a first
interval [x0, x1] ⊂ (p−1[p̄(z)], x∗(z)) such that f ∗(x, z) ≡ B on this interval for some
constant B > 0. By the definition of T , for all x ∈ [x0, x1],

B = f ∗(x, z) = e−δ Ez M̂f
(
e−δI [f ∗(x, z), x, z ] + Ŷ , Ẑ

)
− k.

Since the left-hand-side is a constant, f
(
e−δI [f ∗(x, z), x, z ] + Ŷ , Ẑ

)
= B′ for some con-

stant B′. Moreover, B′ ≤ B since f is decreasing in x and [x0, x1] is the first interval on
which f is constant. Since in addition e−δ Ez M̂ < 1, we have B ≤ e−δ Ez M̂B − k <
B − k ≤ B, which is a contradiction. Hence claim (iv) must be true.

Proof of Proposition 2.1. The continuity of i∗ and claims (i)–(iii) follow from Theorem 2.1
and the definition of i∗. We next show that i∗(x, z) is increasing in x . Since i∗(x, z) is
constant given z when x ≤ p−1[p̄(z)] and when x ≥ x∗(z) by claim (i) and claim (iii),
it remains to show that i∗(x, z) is increasing in x when p−1[p̄(z)] < x < x∗(z). In this
case i∗(x, z) = x − p−1[f ∗(x, z)]. Suppose to the contrary that there exist z ∈ Z and
x1, x2 ∈ (p−1[p̄(z)], x∗(z)) such that x1 < x2 and i∗(x1, z) > i∗(x2, z). Then by definition,

x1 − p−1[f ∗(x1, z)] > x2 − p−1[f ∗(x2, z)].
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Since x1 < x2, this gives p−1[f ∗(x2, z)] > p−1[f ∗(x1, z)]. But by (ii) of Theorem 2.1 and
the definition of T , we obtain

f ∗(x1, z) = e
−δ
Ez M̂f

∗ (e−δi∗(x1, z) + Ŷ , Ẑ)− k
≤ e−δ Ez M̂f ∗

(
e−δi∗(x2, z) + Ŷ , Ẑ

)
− k ≤ f ∗(x2, z),

which implies p−1[f ∗(x1, z)] ≥ p−1[f ∗(x2, z)]. This is a contradiction. Hence, it is true
that i∗(x, z) is increasing in x .

It remains to verify claim (iv). Pick any z ∈ Z and x1, x2 ∈ (p−1[p̄(z)], x∗(z)) with x1 < x2.
By claim (iv) of Theorem 2.1, we have f ∗(x1, z) > f ∗(x2, z). Using the definition of T
and claim (ii) of Theorem 2.1 again, we have

Ez M̂f
∗ (e−δi∗(x1, z) + Ŷ , Ẑ) > Ez M̂f ∗ (e−δi∗(x2, z) + Ŷ , Ẑ) .

The monotonicity of f ∗ then gives i∗(x1, z) < i∗(x2, z). Hence claim (iv) holds.

B. Proof of Section 3 Results

A Markov chain {Zt} with transition matrix F is called monotone if∫
h(ẑ) dF (z1, ẑ) ≤

∫
h(ẑ) dF (z2, ẑ)

whenever z1 ≤ z2 and h : Z→ R is bounded and increasing.

Proof of Proposition 3.1. Let T1 and T2 be respectively the equilibrium price operators
corresponding to {R1t} and {R2t}. It suffices to show that T1f ≤ T2f for all f ∈ C .
To see this, we adopt an induction argument. Suppose T k1 f ≤ T k2 f . Then by the order
preserving property of the equilibrium price operator and the initial argument T1f ≤ T2f
for all f in C , we have T k+11 f = T1(T

k
1 f ) ≤ T1(T

k
2 f ) ≤ T2(T

k
2 f ) = T k+12 f . Hence,

T k1 f ≤ T k2 f for all k ∈ N and f ∈ C . Letting k →∞ then yields f ∗1 ≤ f ∗2 .

We now show that T1f ≤ T2f for all f ∈ C . Suppose there exists (x, z) ∈ S such that
ξ1 := T1f (x, z) > T2f (x, z) =: ξ2. Let Mit = 1/Rit for i = 1, 2. Since R1t ≥ R2t ,
M1t ≤ M2t . The monotonicity of g and h (recall (A)) then imply that

ξ1 = g
[
e−δ Ez M̂1f

(
h(ξ1, x), Ẑ

)
, x
]

≤ g
[
e−δ Ez M̂2f

(
h(ξ1, x), Ẑ

)
, x
]
≤ g

[
e−δ Ez M̂2f

(
h(ξ2, x), Ẑ

)
, x
]
= ξ2,

which is a contradiction. Therefore, T1f ≤ T2f and all the stated claims hold.

Proof of Proposition 3.2. Let C1 be the elements in C such that z 7→ f (x, z) is decreasing
for all x . Obviously, C1 is a closed subset of C . Therefore, to show that z 7→ f ∗(x, z) is
decreasing for all x , it suffices to verify TC1 ⊂ C1.
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Fix f ∈ C1 and z1, z2 ∈ Z with z1 ≤ z2. Suppose there exists an x such that

ξ1 := T f (x, z1) < Tf (x, z2) =: ξ2. (A10)

Note that f is a decreasing function since f ∈ C1. Moreover, by assumption m(z, ε) =
1/r(z, ε) is decreasing in z , y(z, η) is increasing in z , and Φ is monotone. Therefore, for
all ξ ∈ B(x), we have

Ez1 M̂f
(
e−δ[x − p−1(ξ)] + Ŷ , Ẑ

)
≥ Ez2 M̂f

(
e−δ[x − p−1(ξ)] + Ŷ , Ẑ

)
. (A11)

In particular, by the definition of x∗f , we have x∗f (z2) ≤ x∗f (z1). If x < x∗f (z2), then

I(ξ1, x, z1) = x − p−1(ξ1) ≤ x − p−1(ξ2) = I(ξ2, x, z2).

Recall ψ defined in (A5). The above inequality and (A11) imply that

ξ1 = ψ(ξ1, x, z1) ≥ ψ(ξ1, x, z2) ≥ ψ(ξ2, x, z2) = ξ2.

If x ≥ x∗f (z2), then we also have ξ1 ≥ ξ2 since ξ2 = 0 and ξ1 ≥ 0. In either case, this is
contradicted with (A10). Therefore, we have shown that z 7→ T f (x, z) is decreasing for
all x and TC1 ⊂ C1. It then follows that z 7→ f ∗(x, z) is decreasing for all x .

To see that i∗(x, z) is decreasing in z , pick any z1, z2 ∈ Z with z1 ≤ z2. By the definition
of x∗(z) and the monotonicity of f ∗(x, z) in z , we have

0 = f ∗(x∗(z1), z1) ≥ f ∗(x∗(z1), z2)

and thus x∗(z1) ≥ x∗(z2). The definition of i∗ and the monotonicity of p−1 and f ∗ then
implies that

i∗(x, z1) = min{x, x∗(z1)} − p−1[f ∗(x, z1)]
≥ min{x, x∗(z2)} − p−1[f ∗(x, z2)] = i∗(x, z2).

Hence z 7→ i∗(x, z) is decreasing for all x .

Finally, note that Ẑ 7→ M̂f ∗(Ŷ , Ẑ) = m(Ẑ, ε̂)f ∗(y(Ẑ, η̂), Ẑ) is decreasing because f ∗

is decreasing, y is increasing in z , and m is decreasing in z . Since in addition {Zt} is
monotone, it follows immediately by definition that z 7→ Ez M̂f

∗(Ŷ , Ẑ) is decreasing.
Hence p̄ is decreasing by definition.

Next, we discuss the correlation between commodity price and stochastic discount factor.
To state the result, we suppose Zt = (Z1t , . . . , Znt) takes values in Rn. The following is
a simple corollary of the key result of Fortuin et al. (1971).
Lemma B.1 (Fortuin–Kasteleyn–Ginibre). If f , g are decreasing integrable functions on
R
n and W = (W1, · · · ,Wn) is a random vector on Rn such that {W1, · · · ,Wn} are inde-

pendent, then E f (W )E g(W ) ≤ E f (W )g(W ).
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Lemma B.1 implies that if f is decreasing and g is nondecreasing (so that −g is decreas-
ing), then we have E f (W )E g(W ) ≥ E f (W )g(W ).
Proposition B.1. If m(z, ε) is decreasing in z , y(z, η) is nondecreasing in z , Φ is mono-
tone, and {Z1t , . . . , Znt} are independent for each fixed t, then Covt−1(Pt ,Mt) ≥ 0 for
all t ∈ N.

Proof. The equilibrium path is Xt = e−δ i∗(Xt−1, Zt−1) + y(Zt , ηt) where

i∗(Xt−1, Zt−1) = min {Xt−1, x∗(Zt−1)} − p−1 [f ∗(Xt−1, Zt−1)] .

Note that Xt is a nondecreasing function of Zt since z 7→ y(z, η) is nondecreasing for
all η. Moreover, the proof of Proposition 3.2 implies that f ∗ is a decreasing function
under the assumptions of the current proposition. Hence, Zt 7→ f ∗(Xt , Zt) is decreasing.
Since in addition z 7→ m(z, ε) is decreasing for all ε and {Z1t , . . . , Znt} are independent,
applying Lemma B.1 (taking W = Zt) yields

E [f ∗(Xt , Zt)m(Zt , εt) | Xt−1, Zt−1, εt , ηt ]
≥ E [f ∗(Xt , Zt) | Xt−1, Zt−1, εt , ηt ]E [m(Zt , εt) | Xt−1, Zt−1, εt , ηt ]
= E [f ∗(Xt , Zt) | Xt−1, Zt−1, ηt ]E [m(Zt , εt) | Zt−1, εt ] .

Using this result, it follows that

E (PtMt | Xt−1, Zt−1) = E [f ∗(Xt , Zt)m(Zt , εt) | Xt−1, Zt−1]
= E (E [f ∗(Xt , Zt)m(Zt , εt) | Xt−1, Zt−1, εt , ηt ] | Xt−1, Zt−1)
≥ E {E [f ∗(Xt , Zt) | Xt−1, Zt−1, ηt ]E [m(Zt , εt) | Zt−1, εt ] | Xt−1, Zt−1}
= E [f ∗(Xt , Zt) | Xt−1, Zt−1]E [m(Zt , εt) | Xt−1, Zt−1]
= E (Pt | Xt−1, Zt−1)E (Mt | Xt−1, Zt−1) ,

where the second-to-last equality holds because ηt is independent of εt . Hence,

Covt−1(Pt ,Mt) = Cov(Pt ,Mt | Xt−1, Zt−1)
= E (Pt ,Mt | Xt−1, Zt−1)−E (Pt | Xt−1, Zt−1)E (Mt | Xt−1, Zt−1) ≥ 0,

as was to be shown.

Proof of Proposition 3.3. Since Rt = 1/Mt , applying Lemma B.1 again and working
through similar steps to the proof of Proposition B.1, we can show that Covt−1(Pt , Rt) ≤ 0
for all t. The details are omitted.

C. Positive Correlation

Here we provide examples showing that Proposition 3.3 does not hold in general if Zt is
positively or negatively correlated across dimensions. We begin with the following.
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Proposition C.1. If Assumption 2.1 holds and the inverse demand function is p(x) =
a + dx with a > 0 and d < 0, then the equilibrium pricing rule f ∗(x, z) is convex in x .

Proof. Let C2 be the elements in C such that x 7→ f (x, z) is convex for all z ∈ Z. Then C2
is a closed subset of C . Hence it suffices to show that TC2 ⊂ C2. Fix f ∈ C2, since T f ∈
C by Proposition A.2, it remains to show that T f (x, z) is convex in x . Since T f (x, z)
is decreasing in x and, by Lemma A.5, T f (x, z) is linear in x when x ≤ p−1[p̄(z)] or
x ≥ x∗f (z), it suffices to show that T f (x, z) is convex in x on B0(z) := (p−1[p̄(z)], x∗f (z)).
In this case,

T f (x, z) = e−δ Ez M̂f
(
e−δ
(
x − p−1[T f (x, z)]

)
+ Ŷ , Ẑ

)
− k.

Suppose to the contrary that T f (x, z) is not convex, then there exist z ∈ Z, x1, x2 ∈
B0(z), and α ∈ [0, 1] such that, letting x0 := αx1 + (1− α)x2,

αT f (x1, z) + (1− α)T f (x2, z) < Tf (x0, z)

= e−δ Ez M̂f
(
e−δ
(
x − p−1[T f (x0, z)]

)
+ Ŷ , Ẑ

)
− k

≤ e−δ Ez M̂f
(
e−δ
(
x − p−1 [αT f (x1, z) + (1− α)T f (x2, z)]

)
+ Ŷ , Ẑ

)
− k

≤ αT f (x1, z) + (1− α)T f (x2, z),

where the last inequality is by convexity of f (x, z) in x and the linearity of p(x). This is
a contradiction. Hence T f (x, z) is convex in x on B0(z) and the stated claim holds.

Suppose Rt = 0.98 with probability 0.5 and Rt = 1.02 with probability 0.5. If Rt = 0.98,
then Yt = y0 with probability one, and if Rt = 1.02, then Yt = y1 with probability ϕ and
Yt = y2 with probability 1− ϕ. This is a special case of our framework. In particular,

εt = ηt = 0, Zt = (Z1t , Z2t) = (Rt , Yt),

r(Zt , εt) = r(Rt , Yt , εt) = Rt and y(Zt , ηt) = y(Rt , Yt , ηt) = Yt .

Note that {Zt} is iid. Hence, it is naturally monotone and the equilibrium pricing rule
is not a function of Zt . Since in addition r(z, ε) and y(z, η) are increasing in z , the
assumptions of Proposition 3.2 hold. However, because Z1t and Z2t (i.e., Rt and Yt) are
correlated, the assumptions of Proposition 3.3 are violated.

Some simple algebra shows that ERt = 1,

E Yt =
y0
2
+
ϕy1
2
+
(1− ϕ)y2
2

and ERtYt =
0.98y0
2
+
1.02ϕy1
2

+
1.02(1− ϕ)y2

2
.

Hence Covt−1(Rt , Yt) = ERtYt−ERt E Yt = −0.01y0+0.01ϕy1+0.01(1−ϕ)y2. Choose
δ such that δ > logE(1/Rt) ≈ 0.0004. Then β := e−δ E(1/Rt) < 1 and the following
result holds under the current setup.
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Lemma C.1. Either (i) Pt = 0 for all t or (ii) It = 0 in finite time with probability one. If
the per-unit storage cost k > 0, then (ii) holds.

Proof. Suppose (ii) does not hold, then It > 0 for all t with positive probability, and the
equilibrium price path satisfies

P0 ≤ e−δt E

(
t∏
i=0

1

Ri

)
Pt −

(
t−1∑
i=0

e−δi

)
k for all t. (A12)

Note that {Pt} is bounded with probability one since f ∗ ∈ C implies that, for some
L0 <∞, we have Pt = f ∗(Xt) ≤ f ∗(Yt) ≤ f ∗(y

¯
) ≤ p0(y

¯
)+L0 =: L1 <∞ with probability

one, where y
¯
:= min{y0, y1, y2}. If in addition (i) does not hold, we may assume P0 > 0

without loss of generality. In this case, (A12) implies that, when t is sufficiently large, we
have 0 < P0 ≤ βtL1 < P0 with positive probability, which is a contradiction. Hence either
(i) or (ii) holds. If, on the other hand, k > 0 and (ii) does not hold, then for sufficiently
large t, (A12) implies that P0 < P0 with positive probability for all P0 ≥ 0, which is also
a contradiction. Hence (ii) holds and the second claim is also verified.

Consider a linear inverse demand function p as in Proposition C.1. If Pt = 0 for all t,
then Cov(Rt , Pt) = Covt−1(Rt , Pt) = 0 for all t. Otherwise, It−1 = 0 for some finite t, in
which case Xt = Yt , Pt = f ∗(Yt), and thus

Covt−1(Rt , Pt) = Et−1RtPt −ERt Et−1 Pt = ERtf ∗(Yt)−ERt E f ∗(Yt)
= −0.01f ∗(y0) + 0.01ϕf ∗(y1) + 0.01(1− ϕ)f ∗(y2).

If y1, y2 < y0, then Covt−1(Rt , Yt) < 0 and Covt−1(Rt , Pt) > 0 based on the monotonicity
of f ∗. If on the other hand y0, y1 and y2 satisfy25 y1 < p−1(p̄) < y0 < y2, then since f ∗ is
convex by Proposition C.1, and f ∗(x) > p(x) whenever x > p−1(p̄) by Theorem 2.1,

f ∗(y0)− f ∗(y2)
f ∗(y1)− f ∗(y2)

<
y2 − y0
y2 − y1

.

Hence ϕ can be chosen such that y2 − y0 > ϕ(y2 − y1) and f ∗(y0)− f ∗(y2) < ϕ[f ∗(y1)−
f ∗(y2)]. In particular, the above inequalities respectively imply that

Covt−1(Rt , Yt) > 0 and Covt−1(Rt , Pt) > 0.

D. An Identification Equivalence Result

Consider an economy E with linear inverse demand function p(x) = a + dx where a > 0
and d < 0. Let {Yt} be a stationary Markov process with transition probability Ψ. Let b
be the lower bound of the total available supply in this economy.

25Since e−δ E(1/Rt) < 1, we have p̄ = min{e−δ E f ∗(Ŷ )/R̂ − k, p(b)} < p(b). Thus p−1(p̄) > b and this
choice of y0, y1, y2 is feasible.
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Let Ẽ be another economy where the output process satisfies Ỹt = µ + σYt with σ > 0
and the transition probability of {Ỹt} satisfies26

Ψ̃(y , Ŷ ) = Ψ

(
y − µ
σ

,
Ŷ − µ
σ

)
. (A13)

Moreover, let the lower bound of the total available supply of economy Ẽ be b̃ = µ+ σb
and the inverse demand function be

p̃(x) =

(
a −

dµ

σ

)
+
d

σ
x. (A14)

The remaining assumptions are the same across economies E and Ẽ.
Proposition D.1. Ẽ and E generate the same commodity price process.

Proof. To simplify notation, let f and i be the equilibrium pricing function and the equi-
librium inventory function of the baseline economy E. Without loss of generality, we may
assume Zt = Yt .27 Then for all (x, y) ∈ S, {f (x, y), i(x, y)} is the unique solution to

f (x, y) = min
{
max

{
e−δ Ey M̂f [e

−δi(x, y) + Ŷ , Ŷ ]− k, p(x)
}
, p(b)

}
(A15)

i(x, y) =

{
x − p−1[f (x, y)], x < xf (y)

xf (y)− p−1(0), x ≥ xf (y)
(A16)

where
xf (y) := inf

{
x ≥ p−1(0) : f (x, y) = 0

}
.

Consider economy Ẽ, where all magnitudes are denoted with tildes. Let

x̃ = µ+ σx, ỹ = µ+ σy,

m̃(ỹ , ε) = m(y , ε), f̃ (x̃ , ỹ) = f (x, y), ı̃(x̃ , ỹ) = σ i(x, y). (A17)

To prove the statement of the proposition, it suffices to show that {f̃ (x̃ , ỹ), ı̃(x̃ , ỹ)} is
the unique solution to

f̃ (x̃ , ỹ) = min
{
max

{
e−δ Eỹ

ˆ̃Mf̃ [e−δ ı̃(x̃ , ỹ) + ˆ̃Y, ˆ̃Y ], p̃(x̃)
}
− k, p̃(b̃)

}
(A18)

ı̃(x̃ , ỹ) =

{
x̃ − p̃−1[f̃ (x̃ , ỹ)], x̃ > xf̃ (ỹ)

xf̃ (ỹ)− p̃−1(0), x̃ ≤ xf̃ (ỹ)
(A19)

26Condition (A13) obviously holds if, for example, {Yt} is iid and follows a truncated normal distribution
with mean µ0, variance σ20, and truncation thresholds yl < yu. Because in this case, {Ỹt} is iid and follows
a truncated normal distribution as well, with mean µ + σµ0, variance σ2σ20, and truncation thresholds
µ + σyl < µ + σyu. Note that (A13) does not hold if {Yt} and {Ỹt} do not follow the same type of
distribution. For example, it does not hold if {Yt} is iid lognormally distributed, since {Ỹt} is not lognormally
distributed as a linear transform of {Yt}.
27In general, Zt is a multivariate Markov process and Yt corresponds to one dimension of Zt .
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where
xf̃ (ỹ) := inf

{
x̃ ≥ p̃−1(0) : f̃ (x̃ , ỹ) = 0

}
.

This is true by referring to (A15)–(A16). In particular, by (A14) and (A17),
ˆ̃M = m̃( ˆ̃Y, ε̂) = m(Ŷ , ε̂) = M̂, p̃(x̃) = p(x) and p̃(b̃) = p(b).

Furthermore, Ψ̃(ỹ , ˆ̃Y ) = Ψ(y , Ŷ ) by the definition in (A13) and

f̃
[
e−δ ı̃(x̃ , ỹ) + ˆ̃Y, ˆ̃Y

]
= f̃

[
e−δσi(x, y) + µ+ σŶ , ˆ̃Y

]
= f̃

[
µ+ σ

(
e−δi(x, y) + Ŷ

)
, ˆ̃Y
]
= f

[
e−δi(x, y) + Ŷ , Ŷ

]
.

The above analysis implies that (A18) holds. To see that (A19) holds, note that

xf̃ (ỹ) = inf
{
µ+ σx ≥ µ−

aσ

d
: f (x, y) = 0

}
= µ+ σ inf

{
x ≥ p−1(0) : f (x, y) = 0

}
= µ+ σxf (y),

where we have used the definition of p and p̃. This yields x̃ < xf̃ (ỹ) iff x < xf (y). In
combination with (A16), we obtain

ı̃(x̃ , ỹ) = σi(x, y) =

{
σ (x − p−1[f (x, y)]) , x̃ < xf̃ (ỹ),

σ (xf (y)− p−1(0)) , x̃ ≥ xf̃ (ỹ).

When x̃ < xf̃ (ỹ), using (A17) and the definition of p and p̃, we obtain

σ
(
x − p−1[f (x, y)]

)
= σx − σp−1[f̃ (x̃ , ỹ)]

= x̃ − µ− σ

(
f̃ (x̃ , ỹ)− a

d

)
= x̃ − p̃−1[f̃ (x̃ , ỹ)].

When x̃ ≥ xf̃ (ỹ), using the definition of p and p̃ again yields

σ
(
xf (y)− p−1(0)

)
= xf̃ (ỹ)− µ+

aσ

d
= xf̃ (ỹ)− p̃−1(0).

The above analysis implies that (A19) holds. Therefore, economies E and Ẽ generate the
same commodity price process.

E. Algorithms

The storage model is solved by a modified version of the endogenous grid method of Carroll
(2006). The candidate space C and p̄f (z) are as defined in Appendix A. We derive the
following property in order to handle free-disposal and state-dependent discounting in the
numerical computation.
Lemma E.1. For each f in the candidate space C , we have x > p−1[p̄f (z)] if and only if

T f (x, z) = max
{
e−δ Ez M̂f

(
e−δ
(
x − p−1[T f (x, z)]

)
+ Ŷ , Ẑ

)
− k, 0

}
Proof. Immediate by Lemma A.5 (ii)–(iii) and the fact that T f (x, z) is decreasing in
x .
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E.1. The Endogenous Grid Algorithm

To simplify exposition, we consider the setting of Section 4, but it is clear that our
method can be easily adjusted to analyze more general settings (e.g., state-dependent
production, and correlated interest rate and production processes). We discretize the
interest rate process into a finite Markov Chain following Tauchen (1986). The states of
the gross interest rates are indexed by j andm, and the transition matrix has elements Φj,m.
Moreover, we use D(X,R) = p−1[f (X,R)] to denote a candidate equilibrium demand
function. The endogenous grid algorithm for computing the equilibrium pricing rule is
described in Algorithm 1.

Algorithm 1 The endogenous grid algorithm

Step 1. Initialization step. Choose a convergence criterion ϖ > 0, a grid on storage {Ik} starting
at 0, a grid on production shocks for numerical integration {Yn} with associated weights
wn, and an initial policy rule (guessed): {X1k,j} and {P 1k,j}. Start iteration at i = 1.

Step 2. Update the demand function via interpolation and extrapolation:

p−1
(
P ik,j
)
= Di

(
X ik,j , Rj

)
. (A20)

Step 3. Obtain prices and availability consistent with the grid of stocks and interest rates:

P i+1k,j = max

{
e−δ

∑
n,m

wnΦj,mp
(
Di
(
Yn + e

−δIk , Rm
))/

Rm, 0

}
, (A21)

X i+1k,j = Ik + p
−1
(
P i+1k,j

)
. (A22)

Step 4. Terminal step. If max |P i+1k,j − P
i
k,j | ≥ ϖ then increment i to i + 1 and go to step 2.

Otherwise, approximate the equilibrium pricing rule by f ∗(X,R) = p[Di(X,R)].

In particular, we choose to approximate the demand function D(X,R) in Step 2 instead
of the price function f (X,R). This is helpful for improving both precision and stability of
the algorithm when the demand function diverges at the lower bound of the endogenous
state space. A typical example is the exponential demand p(x) = x−1/λ(λ > 0), which is
commonly adopted by applied research (see, e.g., Deaton and Laroque, 1992; Gouel and
Legrand, 2022). If the inverse demand function is linear as in Section 4, however, then it
is innocuous to approximate the price function directly.

Moreover, the validity and convergence of the updating process in Step 3 are justified by
Theorem A.1, Lemma A.5, and Lemma E.1 above.

E.2. Solution Precision

To evaluate the precision of the numerical solution, we refer to a suitably adjusted version
of the bounded rationality measure originally designed by Judd (1992), which we name
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as the Euler equation error and measures how much solutions violate the optimization
conditions. In the current context, it is defined at state (x, z) as

EEf (x, z) = 1−
D1(x, z)
D2(x, z)

,

where f is the numerical solution of the equilibrium price,

D1(x, z) = p−1
[
min

{
max

{
e−δ Ez M̂f (X̂, Ẑ)− k, p(x)

}
, p(b)

}]
− b

and D2(x, z) = p−1[f (x, z)]− b. In particular, both D1(x, z) and D2(x, z) are expressed
in terms of the relative demand for commodity, since b is the greatest lower bound (hence
corresponds to the zero level) of the total available supply. Therefore, EEf (x, z) measures
the error at state (x, z), in terms of the quantity consumed, incurred by using the numerical
solution instead of the true equilibrium pricing rule.

To evaluate the precision of the endogenous grid algorithm in the current context, we
simulate a time series {(Xt , Rt)}Tt=1 of length T =20,000 based on the state evolution
path Xt+1 = e−δi(Xt , Rt) + Yt and Rt+1 ∼ Φ(Rt , ·), where (X0, R0) is given, and

i(Xt , Rt) = min{Xt , x∗f (Rt)} − p−1[f (Xt , Rt)]

is the equilibrium storage function computed by the endogenous grid algorithm. We
discard the first 1,000 draws, and then compute the Euler equation error at the truncated
time series. When applying the endogenous grid algorithm, we use an exponential grid
for storage in the range [0, 2] with median value 0.5, function iteration is implemented
via linear interpolation and linear extrapolation, and we terminate the iteration process at
precision ϖ = 10−4. The rest of the setting is same to Section 4.

Summary statistics (maximum as well as 95-th percentile) are reported in Table A1, where
K is the number of grid points for storage, N is the number of state points for interest
rates, and precision at (x, z) is evaluated as log10 |EEf (x, z)|. The results demonstrate
that the endogenous grid algorithm attains a high level of precision, with an Euler equation
error uniformly less than 0.025% (max |EEf | = 10−3.64 ≈ 0.00023).

E.3. The Generalized Impulse Response Function

To properly capture the nonlinear asymmetric dynamics of the competitive storage model
and effectively study the dynamic causal effect of interest rates on commodity prices, we
refer to the generalized impulse response function proposed by Koop et al. (1996), which
defines IRFs as state-and-history-dependent random variables and is applicable to both
linear and nonlinear multivariate models. We are interested in calculating the IRFs when
(Xt−1, Rt−1) are held at different percentiles of the stationary distribution.
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Table A1 – Precision under different grid sizes and different parameters

A. Different grid sizes
K = 100 K = 200 K = 1,000

Precision N = 7 N = 51 N = 101 N = 7 N = 51 N = 101 N = 7 N = 51 N = 101

max −3.68 −3.64 −3.64 −3.98 −4.02 −4.02 −4.68 −5.21 −5.18
95% −4.66 −4.66 −4.67 −5.21 −5.39 −5.39 −7.02 −6.74 −6.75

B. Different parameters
λ = −0.03 λ = −0.06 λ = −0.15

Precision δ = 0.01 δ = 0.02 δ = 0.05 δ = 0.01 δ = 0.02 δ = 0.05 δ = 0.01 δ = 0.02 δ = 0.05

max −3.63 −3.66 −3.64 −3.64 −3.64 −3.59 −3.68 −3.68 −3.69
95% −5.09 −4.90 −4.65 −4.90 −4.66 −4.45 −4.63 −4.52 −4.97

Notes: In Panel A, we fix λ = −0.06 and δ = 0.02, simulate a time series of length T = 20,000, discard the first
1,000 draws, and then compute the level of precision as log10 |EEf |. When applying the endogenous grid algorithm,
we use an exponential grid for storage in the range [0, 2] with median value 0.5, function iteration is implemented
via linear interpolation and linear extrapolation, and we terminate the iteration process at precision ϖ = 10−4. The
rest of the setting is same to Section 4. In Panel B, we fix the grid size to K = 100 and N = 51, and vary the
parameters.

Algorithm 2 clarifies the computation process of the generalized IRFs based on the setting
of Section 4. However, the algorithm can be easily extended to handle more general
settings as formulated in Section 2, where more advanced interest rate and production
setups are allowed. To proceed, we define

F (x,R, Y ) := e−δ
(
min{x, x∗(R)} − p−1[f ∗(x, R)]

)
+ Y.

The stationary distribution of the state process is computed based on ergodicity. Once
f ∗, i∗, and x∗ are calculated, we simulate a time series of {(Xt , Rt)}Tt=1 according to

Xt+1 = e
−δ (min{Xt , x∗(Rt)} − p−1[f ∗(Xt , Rt)])+ Yt+1 and Rt+1 ∼ Π(Rt , ·)

for T = 200,000 periods, discard the first 50,000 samples, and use the remainder to
approximate the stationary distribution.
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Algorithm 2 The generalized impulse response function
Step 1. Initialization step. Choose initial values for Xt−1 and Rt−1, and a finite horizon H and a

size of Monte Carlo samples S. Furthermore, set the initial samples as

X̃st−1 = X
s
t−1 ≡ Xt−1, Rst−1 = R̃

s
t−1 ≡ Rt−1 and R̃st ≡ µR + ρRR̃st−1 + σR.

Step 2. Randomly sample (H + 1)× S values of production shocks
{
Y st+h

}(H,S)
(h,s)=(0,1)

.

Step 3. (Baseline Economy) Sample (H + 1)× S values of interest rate{
Rst+h

}(H,S)
(h,s)=(0,1)

where Rst+h ∼ Π(Rst+h−1, · ).

Step 4. (Impulse Shock Economy) Sample H × S values of interest rate{
R̃st+h

}(H,S)
(h,s)=(1,1)

where R̃st+h ∼ Π(R̃st+h−1, · ).

Step 5. For h = 0, . . . , H and s = 1, . . . , S, compute the sequence of availability

Xst+h = F (X
s
t+h−1, R

s
t+h−1, Y

s
t+h) and X̃st+h = F (X̃

s
t+h−1, R̃

s
t+h−1, Y

s
t+h).

Step 6. For h = 0, . . . , H, compute the period-(t + h) impulse response

IRF (t + h) =
1

S

S∑
s=1

f ∗(X̃st+h, R̃
s
t+h)−

1

S

S∑
s=1

f ∗(Xst+h, R
s
t+h).
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